An Effective Equation of State for Dense Matter with Strangeness

نویسندگان

  • Shmuel Balberg
  • Avraham Gal
چکیده

An effective equation of state which generalizes the Lattimer-Swesty equation for nuclear matter is presented for matter at supernuclear densities including strange baryons. It contains an adjustable baryon potential energy density, based on models of local potentials for the baryon-baryon interactions. The features of the equation rely on the properties of nuclei for the nucleon-nucleon interactions, and mainly on experimental data from hypernuclei for the hyperon-nucleon and hyperon-hyperon interactions. The equation is used to calculate equilibrium compositions and thermodynamic properties of high density matter with strangeness in two astrophysical contexts: neutron star matter (transparent to neutrinos) and proto-neutron star matter (opaque to neutrinos). The effective equation of state reproduces typical properties of high density matter found in theoretical microscopic models. Of these, the main result is that hyperons appear in both types of matter at about twice the nuclear saturation density, and that their appearance significantly softens the equation of state. The range of maximal masses of neutron stars found in a comprehensive parameter survey is 1.4-1.7 M⊙. Another typical result is that the maximal mass of a proto-neutron star with strange baryons is higher than that of an evolved neutron star (opposite to the case of nuclear matter), setting the stage for a “delayed collapse” scenario. PACS: 21.30.Fe, 26.60.+c, 97.60.BW, 97.60.Jd

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...

متن کامل

8 v 1 7 A ug 2 00 3 Strangeness Production in Nuclear Matter and Expansion Dynamics

Thermodynamical properties of hot and dense nuclear matter are analyzed and compared for different equations of state (EoS). It is argued that the softest point of the equation of state and the strangeness separation on the phase boundary can manifest themselves in observables. The influence of the EoS and the order of the phase transition on the expansion dynamics of nuclear matter and strange...

متن کامل

Hot and dense nuclear matter in an extended mean field approach

We investigate the equation of state of hadronic and quark-gluon matter at finite temperature and baryon density considering the possible formation of mixed phase in high energy heavy ion collisions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For hadronic phase, we study an extended relativisti...

متن کامل

نقاط همرسی در سیالات چگال با استفاده از معادلات حالت

  Some new equations of state which are derived for dense fluids in recent years, namely the linear isotherm regularity (LIR), the dense system equation of state (DSEOS), Inm-Song-Mason equation of state (ISM), and a newly derived semi-emperical equation of state have been used to investigate the common intersection point of isobaric expansivity in αp dense fluids. We have shown that the accura...

متن کامل

Strangeness in strongly interacting matter

This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K-production probes the nuclear equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997